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Abstract. Some of the ground states of Baxter’s IRF model in the square lattice are constructed.
It is shown that the model has an infinite series of ground states which correspond to
monodisperse close-packed triangles of fixed orientation and varying size.

1. Introduction

Depending on the Hamiltonian, the problem of determining the ground states of a lattice
model may be trivial or very difficult. In some cases, like simple Ising models, the ground
states are obvious as is the case in all models without frustration. In these cases the
individual terms in the Hamiltonian can be minimized separately and the ground state
constructed. No such simple procedure is known for frustrated models and it may well turn
out that there exists no general algorithm to solve the ground state problem for a given short
range Hamiltonian.

These difficulties, however, may indicate that something interesting is happening. In
fact, whereas ground states of unfrustrated models do not usually possess much structure and
are ‘dull’ in this sense, frustrated models may have rather complicated ground states with
periodicities much larger than the range of the Hamiltonian. At least one model is known
which possesses an infinite number of ground states with ever larger periodicities ([?], see
also [?]). Models of this kind are of particular interest in the physics of mesoscopics where
structures intermediate between the microscopic and the macroscopic are studied.

The present paper stems from an attempt to construct all the ground states of Baxter’s
IRF model [?] in two dimensions. It turnes out that even this simple model (comprising all
the interactions in the elementary square of the lattice) is surprisingly rich, and a complete
solution of the problem has not been found. What has been found, however, is quite
interesting. This model also has an infinite series of ground states and these correspond to
close-packed triangles of+(−) spins of ever larger size in a sea of−(+) spins. This is a
simple example for a strictly local Hamiltonian generating structures of arbitrary size.

2. The model

Consider the square lattice and rotate it through 45◦ in order to obtain more symmetrical

structures. Let �
�

�
�@

@

@
@s sss σ2

σ1

σ4

σ3

be a typical elementary square in the lattice. The energy of
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a configuration in the general IRF model is defined by

E =
∑

squares

E(σ1, σ2, σ3, σ4) (1)

where the sum is over all elementary squares in the lattice.E(σ1, σ2, σ3, σ4) is a general
function of the spins in the elementary square

E(σ1, σ2, σ3, σ4) =
10∑
i=1

εisi . (2)

Here theεi are energies defining the model and thesi are the following sums of spin
products in the elementary square:

s1 = s = 1
4(σ1 + σ2 + σ3 + σ4)

s2 = @@ss
= 1

2(σ1σ4 + σ2σ3)

s3 = ��s s
= 1

2(σ1σ2 + σ3σ4)

s4 = s s = σ2σ4

s5 = ss = σ1σ3

s6 = ��
@@

@@
��

s s
s s= σ1σ2σ3σ4

s7 =
@@��
s s s= σ1σ2σ4

s8 = @@
��

s
s s= σ1σ2σ3

s9 = ��@@s s s= σ2σ3σ4

s10 =
@@
��s s

s = σ1σ3σ4.

Since we are interested in large lattices we introduce the energy per spinε = E/N

whereN is the number of elementary squares in the lattice. Then

ε =
10∑
i=1

εixi (3)

where

xi = 〈si〉
is the average ofsi over all the elementary squares of the lattice for a given global spin
configuartion{σ }. For example,x1 = 1

N

∑
α σα is the average spin on the lattice for given

{σ } etc.
In this way the energy per spin is a function of the configuration{σ } of the lattice.

The ground state problem then is the following: determine the minimum ofε for an
arbitrary selection of the energy parameters and characterize the corresponding ground state
configuration.
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3. Correlation polyhedron and the ground state problem

Quite generally, consider a lattice model on ad-dimensional lattice with a Hamiltonian of
the form

H = ε1〈σ 〉 + ε2〈σσ ′〉 + · · ·
which depends upon a certain class of spin products

x1 = 〈σ 〉 x2 = 〈σσ ′〉, . . . , xν.

Here again{σ } refers to a fixed configuration and the brackets〈 〉 mean an average over all
the different positions on the lattice.

When plotted as points in aν-dimensional space, every configuration of the spins in the
lattice generates a pointx = {xi}1,ν in this space. LetP be the set of all pointsx obtained
in this way. For a finite latticeP is a bounded collection of points (having6 2N points for
a lattice withN sites), but for an infinite latticeP becomes a closed and convex set [4, 6].
This set is the correlation polyhedron and is denoted byP. The points ofP correspond to
those correlations that are realizable by configurations on the infinite lattice.

For a simple example consider the one-dimensional Ising model [?]. Here only two
correlations are relevant, the average spinx1 = 〈σ 〉 and the NN correlationx2 = 〈σσ ′〉 where
σ andσ ′ are neighbouring spins. Sinceσ = ±1, we have the inequalities(σ + σ ′ ± 1)2 > 1.
Averaging we obtainx2 ± 2x1 + 1 > 0. These two inequalities together withx2 6 1 delimit
the correlation polyhedronP which in this case is a triangle.

Figure 1. Correlation triangle for the one-dimensional Ising model.

The vertices of the triangle are(1, 1), (−1, 1), (0, −1). They correspond to the two
ferromagnetic ((+), (−)) and the antiferromagnetic(+−) states.

This simple case exemplifies the general situation: all configurations{σ } of the lattice
map via {σ } → {xi({σ })} into P. Conversely, every point ofP stems from a spin
configuration on the lattice. We shall call a point{xi} with the latter property arealizable
point.

The significance ofP for the ground state problem is the fact that the vertices correspond
to the possible ground states. This is apparent for the simple Ising model discussed above,
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but is generally true as the following argument demonstrates. Consider a Hamiltonian of
the form

H =
ν∑
1

εixi .

GeometricallyH = ε corresponds to a hypersurface, and hypersurfaces with the sameεi

but differentε are parallel. The ground state problem can now be formulated as follows.
Minimize H subject to the constraint that{xi} is physically realizable, i.e. that{xi} is located
in P. It is geometrically obvious thatH assumes its minimum at one of the vertices ofP.
Conversely, every proper vertex corresponds to the minimum ofH for certain ranges of the
εi .

For simple systems (one-dimensional models or IRF models without three-spin
interactions, see below)P is a finite polyhedron having a finite number of faces and vertices.
For such systems, varying theεi generates only a finite number of groundstates.

On the other hand, suppose thatP has an infinite number of vertices. Then, since
P is a finite subset of a finite-dimensional space, these vertices must have at least one
accumulation point. (In the examples below this point is one of the ferromagnetic points
σi ≡ 1 or σi ≡ −1.) In every vicinity of the accumulation point there is an infinite number
of vertices. The corresponding ground states must have ever larger periodicities since the
number of states with bounded periodicity is finite. This also implies a kind of structural
instability of the energy parametersεi : in this region of the phase diagram, arbitrary small
changes of theεi result in large and different changes of the ground state.

4. Some remarks on the general IRF model

A polyhedron is uniquely specified by giving either its vertices or, dually, its facets, i.e. its
faces of maximal dimension. Now it seems to be generally true that the facets of correlation
polyhedra are much easier to determine than the vertices [2, 4–6]. This was true for the
simple example above: the facets of the triangle are its sides and they follow from simple
local inequalities. In fact, for finite-range Hamiltonians in one dimension, the remarks
below are sufficient to generate all the facets [?].

A facet for a correlation polyhedron is a linear inequality for the average spin products
of the form

1 +
10∑
1

αixi > 0. (4)

(For definiteness the constant has been normalized to 1; it is positive since random
configurations withxi = 0 are located in the interior ofP.) Inequality (4) is a facet if

(i) it is true for any spin configuration in the lattice
(ii) it becomes an equality for at least ten statesx(j) spanning the hypersurface

1 +
10∑
1

αixi = 0.

Now a simple set of linear inequalities is the following. Take any set of four integers
τi = ±1 and consider the product

4∏
i=1

(1 + τiσi)
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for an elementary square in the lattice. This product is always non-negative. Averaging we
obtain the following linear inequalities

0 6
〈 4∏

i=1

(1 + τiσi)

〉
τi = ±1. (5)

These 16 inequalities determine a certain bounded convex polyhedronP∗ in the ten-
dimensional space of thexi . P∗ containsP since P can also be characterized as the
intersection ofall true inequalities.

In the one-dimensional case the set of inequalities obtained by this method is complete
[?] in the sense that any other linear inequality is a convex combination of these. In this
caseP∗ coincides withP. In two dimensions however,P∗ turns out to be strictly larger
thanP. In order to see this, let us first characterize the facets ofP∗ more closely.

Consider a certain configuration{σ } of spins in the infinite square lattice and focus on
the elementary squares. The probability of occurrence of a particular elementary square

τ4 τ2
τ1

τ3

is given by

p

(
τ4 τ2

τ1

τ3
)

= 2−4

〈 4∏
1

(1 + τiσi)

〉
. (6)

This is a very simple characterization ofP∗: in the interior ofP∗ each of the 16 different
elementary squares occurs with a positive probability. Near the boundary the probability of
certain squares drops to zero.

Note that thep’s provide an alternative and more symmetrical characterization of a
state than thex. Aside from normalization∑

τ1,τ2,τ3,τ4

p

(
τ4 τ2

τ1

τ3
)

= 1 (7)

there exist the following linear relations which reduce the number of independent variables
to ten. ∑

τ1,τ2

p

(
σ1 τ2

τ1

σ2
)

=
∑
τ1,τ2

p

(
τ1 σ2

σ1

τ2
)

(8)

∑
τ1,τ2

p

(
σ2 τ1

σ1

τ2
)

=
∑
τ1,τ2

p

(
τ2 σ1

τ1

σ2
)

. (9)

We will use both sets of variablesp andx.
Let us return to the relation betweenP andP∗. It is not difficult, but somewhat tedious,

to determine the vertices ofP∗. It turns out thatP∗ has precisely 21 vertices which are
listed in table 1.

The first 17 of these vertices are physically realizable in the sense that spin configurations
exist in the infinite lattice which have the pointx as spin correlations. For example, vertices
1a, b correspond to the ferromagnetic, vertex 2 to the antiferromagnetic and vertices 3a, b

describe lamellar ground states.
Vertices 8 are not realizable. To see this, consider for example vertex 8a. One finds that

this vertex is located on the intersection of all facets except four and that the only allowed
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Table 1. Vertices ofP∗.

Vertex x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Unit cell

1a, b ±1 1 1 1 1 1 ±(1 1 1 1) 1× 1
2 0 −1 −1 1 1 1 0 0 0 0 2× 2
3a 0 −1 1 −1 −1 1 0 0 0 0 2× 1
3b 0 1 −1 −1 −1 1 0 0 0 0 1× 2
4a, b ± 1

2 0 0 0 0 −1 ∓( 1
2

1
2

1
2

1
2) 2 × 2

5a, b 0 0 0 ±(1 −1) −1 0 0 0 0 4× 4
6a, b ± 1

3 − 1
3 − 1

3 1 − 1
3 − 1

3 ±( 1
3 −1 1

3 −1) 3× 3
6c, d ± 1

3 − 1
3 − 1

3 − 1
3 1 − 1

3 ±(−1 1
3 −1 1

3) 3 × 3
7a, b 0 1

3 − 1
3 − 1

3 − 1
3 − 1

3 ±(− 2
3

2
3

2
3 − 2

3) 2 × 3
7c, d 0 − 1

3
1
3 − 1

3 − 1
3 − 1

3 ±(− 2
3 − 2

3
2
3

2
3) 3 × 2

8a, b 0 0 0 −1 0 0 ±(0 1 0 −1)
8c, d 0 0 0 0 −1 0 ±(1 0 −1 0)

configurations of elementary squares are the following.

− +
+
+

+ −
+
−

+ −
−
+

− −
−
+

However it can be seen easily that no global spin configuration on the plane can be
constructed with these squares only. Therefore vertex 8a and similarily the other vertices
8 are not realizable andP∗ is strictly larger thanP.

We shall now study the boundary ofP on certain low-dimensional subspaces.

5. The subspacex9 = 1

Constraints of the form
∏

σ ≡ 1 or
∏

σ ≡ −1 are generally equivalent to a reduction of
dimension by one. On these subspaces the spins in the whole plane are uniquely determined
by the spins in a finite number of rows or columns. For the IRF model the only non-
trivial case concerns subspaces involving three spins. Here some new ground states appear,
different from the vertices ofP∗.

On the spacex9 = 〈 ��@@s s s 〉 = 1 many of the spin averages coincide. The only
independent variables remaining are

z1 = 〈 s 〉 = 〈 @@ss
〉 = 〈 ��s s

〉 = 〈 s s 〉 = 〈 ��
@@��

@@s s
s s〉 = 〈 ��

@@
s
s s〉 = 〈 @@

��s s
s 〉

z2 = 〈 ss 〉 = 〈 @@��
s s s〉.

The probability for an elementary square can be written as

p

(
τ4 τ2

τ1

τ3
)

= 1
16(1 + τ2τ3τ4)[1 + z1(τ1 + τ2 + τ3 + τ4 + τ1τ2 + τ1τ4) + z2τ1τ2τ4]. (10)

In particular

p

(
+ +

+
+ )

= 1
8(1 + 6z1 + z2) (11)

p

(
+ +

−
+ )

= p

(
+ −

+
− )

= p

(
− +

+
− )

= 1
8(1 − z2). (12)
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One finds that the+spins are always organized into triangles. As an example, figure 2
shows a triangle of length 5.

Figure 2. Triangle of+spins of length 5.+spins are always organized into triangles of varying
length and fixed orientation.

The size of these triangles can vary but their orientation is fixed. Note the+spins in
the three outermost corners. They imply that each triangle is connected to neighbouring

triangles. The IRF model with constraint��@@s s s≡ 1 then describes the statistical mechanics
of triangles of arbitrary size which are connected to their neighbours at their corners. A
typical configuration is displayed in figure 3.

Figure 3. A typical configuration of spins.

Figure 4 depicts the (essentially unique) configurations of monodisperse triangles of
length 1, 2, 3.

It will now be shown that the ground states are composed of the three states in figure 4
together with the ferromagnetic state.

The phase diagram is plotted in figure 5. In order to show that this phase diagram is
complete, i.e. that there are no more ground states, the following inequalities have to be
proved:

1 + 6z1 + z2 > 0 (13)

1 + 4z1 + 3z2 > 0 (14)

1 − 4z1 + 3z2 > 0. (15)

Inequality (13) follows from (11). The proof of inequalities (14) and (15) is somewhat
tedious and relegated to appendix A.

Let us now make a brief digression and consider the surface tension and intermediate
phases.
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Figure 4. Close-packed monodisperse triangles of lengths 1, 2, 3. The unit cells are 3× 3 (a),
7 × 7 (b) and 6× 6 (c).

Figure 5. Phase diagram onx9 = 1. There are four ground states: the ferromagnetic+state
and three phases of triangles of length 1, 2, 3.

5.1. Surface tension and intermediate phases

(i) Consider first the line segment between the 3× 3 and the ferromagnetic state in the
phase diagram. The surface tension between these states is positive. In order to prove this,
it is suffient to show that the only configurations{σ } with x9 ≡ z2 ≡ 1 are the ferromagnetic

stateσi ≡ + or the 3× 3 state. Indeed, the conditionx9 ≡ z2 ≡ 1 means that��@@s s s ≡
@@��
s s s for any elementary square, and it is an easy exercise to convince oneself that this

constraint is only satisfied by the ferromagnetic+state or the 3× 3 state. Any other
configuration on the subspacex9 ≡ 1 must have@@��

s s s
< 1 for some elementary squares

and therefore has a higher energy for certain ranges of theεi .
(ii) For the 3×3 and 7×7 ground states the left-hand side of (11) must vanish. Therefore

the length of all triangles must be6 2. Now it is easy to verify that triangles of length 1
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and 2 can never be neighbours in the above sense, if no triangles of length> 3 are allowed.
Therefore only the endpoints can be realized and the surface tension is positive.

(iii) On the boundary segment connecting the 7× 7 and 6× 6 ground states the equality
sign in (14) is valid. Therefore, equation (A4) of appendix A with the+ sign is valid as
an equality and no row or column of spins may contain the sequences++++ or +−−+.
Since a triangle of length 1 involves the latter sequence, only triangles of length 2 or 3 are
allowed on the 6× 6 – 7× 7 boundary. Now it is easy to verify that two neighbouring
triangles of length 2 and 3 involve the forbidden sequence+−−+. Therefore, only the
endpoints can be realized and the surface tension is positive again.

(iv) Consider now the 6×6–ferromagnetic boundary. No configuration which maps upon
this boundary may contain the sequences−+−− or −−+−. It is shown in appendix B that
an infinite number of points on the boundary can be realized. The surface tension therefore
vanishes.

6. Infinitely many ground states

In appendix B we found a large number of periodic states which are almost ground states.
The admissible configurations were restricted to the intersection of the eight hyperplanes

p

(
τ4 τ2

τ1

τ3
)

= 0 with τ2τ3τ4 = 1. Now we restrict the configurations in such a way that the

admissible squares consist of the following set.

+ +
+
+

+ +
−
+

− +
+
−

+ −
+
−

− +
−
−

− −
−
+

+ −
−
−

− −
+
−

− −
−
−

(16)

This set differs from the previous one by the omission of the single square− −
+
+

and
the addition of the last two squares.

One easily verifies that again the+spins are organized into triangles that swim in a
sea of negative spins. However, in contrast to the previous section, triangles are no longer
connected.

Since every+spin is part of a triangle, there are three independent variables.

x = p

(
+ +

+
+ )

is analogous to the area covered by triangles,

y = p

(
+ +

−
+ )

= p

(
− +

+
− )

= p

(
+ −

+
− )

corresponds to the interface between+phase in the interior and the surrounding−phase,
and

z = p

(
− +

−
− )

= p

(
+ −

−
− )

= p

(
− −

+
− )
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is the number density of triangular ‘droplets’. Regarding the final two squares, we have

p

(
− −

−
+ )

= y + z

andp

(
− −

−
− )

is given by normalization

p

(
− −

−
− )

= 1 − x − 4y − 4z. (17)

It will be proved below that all close-packed triangles of lengthL = 1, 2, 3, . . . are
ground states and that conversely every ground state on the manifold (16) either is of this
form or belongs to one of the two ferromagnetic states. Figure 6 displays the ground state
for L = 4.

Figure 6. Part of ground state configurations forL = 4. The unit cell is 21× 21.

The Lth ground state generates the point

rL = ( 1
2(L − 1)(L − 2)zL, (L − 1)zL, zL)

with

zL = 1
3
4L2 + 2L + aL

aL =
{

1 : L even

5/4 : L odd.

Figure 7 shows the projection of the pointsrL onto the(y, z) plane forL = 1, . . . , 20.
The two ferromagnetic states collapse to the point(0, 0) which is also included.

The figure already permits an easy proof that the number of ground states is infinite.
Indeed, sincezL/yL → 0 for L → ∞, any convex set containing these states and bounded
by a finite number of straight lines must contain a part of they-axis as a boundary. This,
however, is impossible since it implies a finite concentration of+spins in the absence
(z = 0) of triangles.

For a more complete analysis we have to find the set of inequalities delimiting the
possible values of(x, y, z) that can be realized.

One set of inequalities is easy to obtain: letcL be the probability that a particular

elementary square is the upper corner− −
+
−

of a triangle of lengthL. cL is the

concentration of triangles of lengthL and

z =
∑
L>1

cL
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Figure 7. Projection of groundstates onto the(y, z) plane forL = 1, . . . , 20.

y =
∑
L>1

(L − 1)cL

x = 1
2

∑
L>1

(L − 1)(L − 2)cL.

Multiplying the inequality

(L − k)(L − k − 1) > 0

by cL and summing we obtain the first set of inequalities

Fk > 0 k = 0, 1, . . . . (18)

with

Fk = x − (k − 1)y + 1
2k(k − 1)z. (19)

Equality holds for those configurations which possess triangles of sizek or k + 1 only.
This is sufficient to prove that monodisperse close-packed triangles are true ground

states. Indeed, consider the intersection

(Fk = 0) ∩ (Fk+1 = 0).

This intersection is a (one-dimensional) edge of the correlation polyhedron. It corresponds
to all configurations of triangles of lengthk + 1 only. The extreme realizable points of
this edge are ground states. One of these points isx = y = z = 0 which represents the
ferromagnetic state of all spins negative. If we believe that the statesrL represent the
closest packing of monodisperse triangles, then therL are indeed true ground states. This
seems intuitively very plausible. A formal proof can be given using the following set of
inequalities:

k2p

(
− −

+
− )

− kp

(
+ +

−
+ )

+ p

(
− −

−
− )

> 0 k = 0, 1, 2, . . . . (20)

These inequalities are demonstrated in appendix C, completing the proof.

7. Higher dimensions

The methods of this paper can be applied to higher dimensions with minor modifications. For
example, the ‘interactions round the cube’ model for the cubic lattice has an infinite number
of ground states corresponding to monodisperse close-packed tetrahedra of arbitrary size.
Other close-packed structures like cylinders with triangular base and height 1 also generate
infinite series of ground states.
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Appendix A

In order to prove the inequalities (14) and (15), consider a typical configuration of the
ith row and the first few rows above, subject to the constraintx9 = 1. It has the form

· · · σ1σ2σ3σ4 · · ·
· · · σ1σ3 σ2σ4 · · ·

· · · σ1σ2 σ2σ3 σ3σ4 · · ·
· · · σ1 σ2 σ3 σ4 · · ·

Let z
(j)

1 be the spin average in thej th row. Then

z
(i)

1 = 〈σ 〉
z

(i−1)

1 = 〈σkσk+1〉
z

(i−2)

1 = 〈σkσk+2〉
z

(i−3)

1 = 〈σkσk+1σk+2σk+3〉
and

z
(i)

2 = 〈σkσk+1σk+2〉
z

(i−1)

2 = 〈σkσk+3〉.
Let us form linear combinations

z̃
(i)

1 = γ1z
(i)

1 + γ2z
(i−1)

1 + γ3z
(i−2)

1 + γ4z
(i−3)

1

where
∑4

1 γi = 1 and

z̃
(i)

2 = αz
(i)

2 + (1 − α)z
(i−1)

2 .

It will be shown below thatα and theγi can be chosen in such a way that

1 + 4z̃
(i)

1 + 3z̃
(i)

2 > 0 (A1)

1 − 4z̃
(i)

1 + 3z̃
(i)

2 > 0. (A2)

Summing these inequalities yields (14) and (15).
It remains to demonstrate (A1) and (A2). These are inequalities for certain one-

dimensional Hamiltonians with interaction ranger 6 3. Now the ground states for finite
range Hamiltonians on one-dimensional lattices are well known [7, 6]. Hamiltonians with
interaction range6 3 have precisely 19 ground states and it is sufficient to prove (A1),
(A2) for each of them. Calculating the lhs on the 19 ground states and demanding that the
result be non-negative yields a system of 19 linear inequalities forα and theγi . The only
solution to these inequalities (which is the same for (A1) and (A2)) is given by

α = 2
3 γ1 = 1

2 γ2 = 1
4 γ3 = 0 γ4 = 1

4.

In hindsight, the corresponding inequalities

1 + 2〈σkσk+1σk+2〉 + 〈σkσk+3〉 > ±(2〈σ 〉 + 〈σkσk+1〉 + 〈σkσk+1σk+2σk+3〉) (A3)

can also be proved directly from the local inequalities

1 + σ1σ2σ3 + σ2σ3σ4 + σ1σ4 > ±(σ1 + σ4 + σ2σ3 + σ1σ2σ3σ4)

which follow from

(1 ∓ σ2σ3)(1 ∓ σ1)(1 ∓ σ4) > 0. (A4)
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Appendix B

In this appendix an infinite number of configurations are exhibited which map onto the
6× 6–ferromagnetic boundary in figure 5. This is sufficient to prove that the corresponding
surface tension vanishes.

Let us call a sequence ofn −spins· · ·+− · · · −︸ ︷︷ ︸
n

+ · · · a−string of lengthn and similarly

for +strings. It is not difficult to prove the following facts.
(i) In any single row or column the−spins are either isolated (i.e. have length 1; type

A), or have an even length (type B).
(ii) Rows (and columns) of type A and B alternate.
(iii) In a row of type A all the+strings have odd lengths.
As a corollary it follows that the lengths of all triangles of+spins are odd.
Let us focus on rows of type A. A typical row of type A can be represented by a

sequence of integers

· · · , m1, m2, m3, · · · (B1)

where 2mi − 1 is the length of the+strings. The next row of type A below is obtained
from (B1) by applying the transformation

· · · , m, 1, · · · , 1︸ ︷︷ ︸
n

, m′, · · ·

↓ m > 1, m′ > 1, n > 0
· · · , m − 1, n + 1, m′ − 1, · · · .

(B2)

Of particular interest are the periodic states. A simple example is

...

· · · , 4, 1, 4, 1, · · ·
· · · , 3, 2, 3, 2, · · ·

· · · , 2, 1, 1, 1, 2, 1, 1, 1, · · ·
· · · , 1, 4, 1, 4, · · ·

...

This represents a state of period 10 in the horizontal direction. One can show that the period
p as well as the number of+strings per period is always even and that the integersmi

represent a partition ofp/2. We will not delve more deeply into the interesting combinatoric
properties of these partitions. Suffice it to say that the sequences

· · · , 2m, 1, 2m, 1, · · · m = 1, 2, . . .

as well as many others generate an infinite number of intermediate periodic states located
on the 6× 6–ferromagnetic boundary.

Appendix C

This appendix proves inequalities (20).
Let there be a total ofM triangles of+spins with lengthsL1, . . . , LM . Let N− be the

total number of elementary squares of the form− −−
−

. We have to prove

k2M − k

M∑
i=1

(Li − 1) + N− > 0 k = 0, 1, 2, . . . . (C1)
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In order to estimateN− , complete each triangle of lengthL to a square of lengthL × L as
shown in figure C1.

Figure C1. Triangle of +spins and typical spin configuration below. Pathw∗ delimits the
region of−spins associated with the triangle.

Associate a numberN(i)
− of elementary squares− −−

−
with this figure in the following

way.
Consider all pathsw from the left to the right corner with the properties
(i) the only turns allowed are∨ or ∧
(ii) all the triangles protruding into the lower part of the square are beloww.
Let w∗ be that path for which the number of−spins above is maximal andN(i)

− the

number of elementary squares− −−
−

abovew∗. Since no square− −−
−

is counted twice,

N− >
M∑
i=1

N(i)

−

and it is sufficient to prove

k2M − k

M∑
1

(Li − 1) +
M∑
1

N(i)

− > 0. (C2)

In order to estimateN(i)
− , let Mi be the number of∧ turns for pathw∗ for the ith

triangle. Then one can show that

N(i)

− > 1

2

[
Li

Mi + 1

]
(Li − Mi − 1 + Li mod(Mi + 1)) (C3)

where [x] is the greatest integer6 x. Now it is sufficient to prove

k

M∑
1

(Li − 1) 6 1

2

M∑
1

[
Li

Mi + 1

]
(Li − Mi − 1 + Li mod(Mi + 1)) + k2M
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where
M∑
1

Mi 6 M. (C4)

Setting

Li = Pi(Mi + 1) + Qi 0 6 Qi 6 Mi

and minimizing with respect toPi yields

Pi ∈ {k, k + 1}. (C5)

Minimizing with respect toQj yields

Qj =
{

0 : Pj = k + 1

arbitrary : Pj = k
(C6)

and the inequality reduces to (C4). The conditions of equality in (20) are given by (C5),
(C6), and equality in (C4).
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